March 2016

Taq PCR Master Mix Kit

The Taq PCR Master Mix Kit (cat. nos. 201443 and 201445), including buffers and reagents, should be stored immediately upon receipt at -30 to -15° C in a constant-temperature freezer.

Further information

- Taq PCR Handbook: www.qiagen.com/HB-0455
- Safety Data Sheets: www.qiagen.com/safety
- Technical assistance: support.qiagen.com

Notes before starting

- Taq PCR Master Mix provides a final concentration of 1.5 mM MgCl₂ in the reaction mix, which will give satisfactory results in most cases. However, in some cases, reactions may be improved by increasing the final Mg²⁺ concentration. If a higher Mg²⁺ concentration is required, prepare a stock solution containing 25 mM MgCl₂ and add the appropriate volume to the reaction mix as described in the Taq PCR Handbook.
- A No Template Control (NTC) should always be included.
- It is recommended that the PCR tubes be kept on ice until they are placed in the thermal cycler.

- 1. Thaw primer solutions and template nucleic acid. Keep on ice after complete thawing, and mix thoroughly before use.
- 2. Thaw *Taq* PCR Master Mix and mix by vortexing briefly to avoid localized differences in salt concentration.
- 3. Prepare a reaction mix according to Table 1.

Note: The reaction mix typically contains all the components required for PCR except the template DNA. Prepare a volume of reaction mix 10% greater than that required for the total number of reactions to be performed.

Table 1. Reaction setup using Taq PCR Master Mix

Component	Volume/reaction	Final concentration	
Reaction mix <i>Taq</i> PCR Master Mix, 2x	50 µl	2.5 units <i>Taq</i> DNA Polymerase 1x QIAGEN PCR Buffer* 200 µM of each dNTP	
10x primer mix (2 µM of each primer)	10 μΙ	0.2 μM [†] of each primer	
RNAse-free water (provided)	Variable	-	
Template DNA (added at step 5)	Variable	≤1 µg/reaction	
Total reaction volume	100 µl‡		

^{*} Contains 1.5 mM MqCl₂.

^{† 0.2} μM is suitable for most PCR systems. Alternatively, perform a series of reactions using 0.1 μM to 0.5 μM of each primer to determine the optimal primer concentration.

[‡] If using different reaction volumes, adjust the amount of each component accordingly.

- 4. Mix the reaction mix gently but thoroughly, for example by pipetting up and down a few times. Dispense appropriate volumes into PCR tubes or the wells of a PCR plate.
- Add template DNA (≤1 µg/reaction) to the individual PCR tubes or wells containing the reaction mix. For RT-PCR, add an aliquot from the reverse transcriptase reaction. The volume added should not exceed 10% of the final PCR volume.
- 6. Program the thermal cycler according to the manufacturer's instructions. A typical PCR cycling program is outlined in Table 2.

Table 2. Optimized cycling conditions

Step	Time	Temperature	Comment
Initial denaturation	3 min	94°C	
3-step cycling:			
Denaturation	0.5-1 min	94°C	
Annealing	0.5-1 min	50-68°C	Approximately 5°C below $T_{\scriptscriptstyle m}$ of primers.
Extension	1 min	72°C	For PCR products longer than 1 kb, use an extension time of approximately 1 min per kb DNA.
Number of cycles	25–35		
Final extension	10 min	72°C	

- 7. For a simplified hot start, proceed as described in step 7a. Otherwise, place the PCR tubes in the thermal cycler and start the cycling program.
 - 7a. Simplified hot start: Start the PCR program. Once the thermal cycler has reached 94°C, place the PCR tubes in the thermal cycler. In many cases, this simplified hot start improves the specificity of the PCR. For highly specific and convenient hot-start PCR, use HotStarTaq® Plus DNA Polymerase.

Note: After amplification, samples can be stored overnight at 2-8 °C, or at -20 °C for longer storage.

Scan QR code for handbook.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual.

Trademarks: QIAGEN®, Sample to Insight®, HotStarTaq® (QIAGEN Group). 1101185 03/2016 HB-0656-002 © 2016 QIAGEN, all rights reserved.